

UPS Webinar: Draft Test Procedure Review 11-19-10

RJ Meyers

US Environmental Protection Agency ENERGY STAR Program

Matt Malinowski Nina Ruiz

ICF International ICF International

Outline

- 1. Introduction
 - Meeting objectives
 - Background
- 2. UPS Test Procedure Review
- 3. What's Next?
- 4. General Comments
- 5. Contacts and Resources

Introduction: Meeting Objectives

- 1. Feedback on draft test procedure
- 2. Examine specification development timeline
- 3. Take general comments or concerns relevant to UPS spec development

Introduction: Why ENERGY STAR?

- UPS Energy Savings Potential is High
 - 550 to 710 million kWh/year in the US
 - Majority in small capacity devices
 - But per-unit savings greater in high capacity
- Data center energy demands increasing
 - Double every ~5 years
 - UPS critical for efficiency
- Potential for Cost Savings
 - Approximately 2 3 years ROI
 - Varies by product size

Introduction: Why ENERGY STAR (cont'd)

- Pre-existing efficiency trend
 - Customer demand drives efficiency
 - ENERGY STAR can help:

Introduce Uniformity

- UPS efficiency testing, reporting
- Aid customers in comparisons

Performance vs. Efficiency

- Help datacenter customers make tradeoffs
- Possibly develop sizing guidance

UPS Test Procedure Review

ENERGY STAR UPS Draft Test Method: Overview

- Based on Int'l Electrotechnical Commission (IEC) Standards
 - IEC standard 62040-3. "Uninterruptible power systems (UPS) - Part 3: Method of specifying the performance and test requirements." Ed. 2.0 Committee Draft for Vote (CDV).
 - IEC standard 88528-11. "Reciprocating internal combustion engine driven alternating current generating sets—Part 11: Rotary uninterruptible power systems—Performance requirements and test methods." Ed. 1.0.

INTERNATIONAL STANDARD IEC 88528-11

> First edition 2004-03

Reciprocating internal combustion engine driven alternating current generating sets –

Part 11

Rotary uninterruptible power systems – Performance requirements and test methods

Reference number IEC 88528-112004(E)

ENERGY STAR UPS Draft Test Method: Overview (cont'd)

- Use to assemble a dataset in support of a future ENERGY STAR specification for UPS
 - Dataset assembly for 8 weeks: from Dec. 2010 to Feb. 2011
 - Test method may be revised before use for qualification

EPA welcomes comment on the test method from both perspectives:

- Making comparisons between models for specification development
- Clearly addressing full range of UPSs for qualification

ENERGY STAR UPS Draft Test Method: Applicability

- Eligible Products:
 - Single-phase and threephase UPS for home, office, and datacenter use
 - Static and Rotary UPSs
 - AC-output and DC-output UPSs
- Intended to provide a complete assessment of UPS efficiency during typical use with an IT load

DOE Battery Charger Test Method

- The U.S. Department of Energy (DOE) recently proposed a test method for battery chargers.
 - To evaluate energy savings for battery charging component of consumer UPSs.
 - Measures energy consumption during charging and maintenance (float) modes of charger, with no load connected.
- EPA is proposing to use its draft test method (based on IEC 62040-3) to evaluate UPS energy consumption
 - Takes into account normal mode, loading, etc.

ENERGY STAR UPS Draft Test Method: Definitions

- Definitions sourced from:
 - Draft IEC 62040-3 Ed. 2.0
 IEC 88528-11
 - Stakeholder comments
 Framework Document

- Definitions divided into several sections:
 - Product Types
 - Operational Modes
 - Power

- Redundancy
- Topologies
- Other

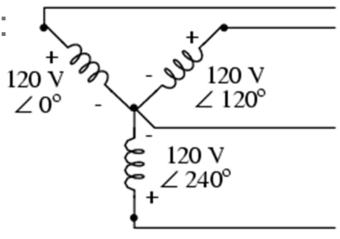
ENERGY STAR UPS Draft Test Method: Definitions (cont'd)

- Energy Saver Mode (such as "Eco-Mode")
 - Energy Saver modes meet the definition of Normal Mode in IEC 62040-3 Ed. 2.0.
 - EPA proposes to compare efficiency in each mode that meets the definition, including Energy Saver modes.

ENERGY STAR UPS Draft Test Method: Definitions (cont'd)

- UPS Topologies and Types (static versus rotary)
 - Only used to classify UPSs during data analysis.
 - EPA intends to use technology-agnostic approach.
- Topologies not listed are considered subtypes of the listed topologies.
 - E.g., "delta-conversion" considered line-interactive

ENERGY STAR UPS Draft Test Method: Definitions (cont'd)


- Unit Under Test
 - Includes not only UPS, but also any accessories to meet test voltage conditions.
 - Establishes a common set of output and input characteristics to enable comparisons between models.

ENERGY STAR UPS Draft Test Method: Test Setup

- EPA proposes to categorize UPSs by number of phases:
 - Consumer/small office
 - Datacenter UPSs
- Alternatively, EPA is also considering using output power (per IEC 62040-3)

ENERGY STAR UPS Draft Test Method: Test Setup (cont'd)

Input Power Requirements Single-Phase

Market	Voltage	Voltage Tolerance	THD	Freq.	Freq. Tolerance
North America, Taiwan	115 VAC	+/- 1.0 %	2.0 %	60 Hz	+/- 1.0 %
Europe, Australia, New Zealand	230 VAC	+/- 1.0 %	2.0 %	50 Hz	+/- 1.0 %
Japan	100 VAC	+/- 1.0 %	2.0 %	50Hz/ 60 Hz	+/- 1.0 %

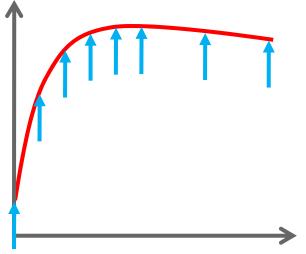
And Three-Phase products

Market	Voltage	Voltage Tolerance	THD	Freq.	Freq. Tolerance
North America, Taiwan	277/480 VAC	+/- 4.0 %	5.0 %	60 Hz	+/- 1.0 %
Europe, Australia, NZ, Japan	230/400 VAC	+/- 4.0 %	5.0 %	50Hz	+/- 1.0 %

ENERGY STAR UPS Draft Test Method: Test Setup (cont'd)

- Typical UPS operating voltages
 - European output voltage proposed for three-phase
 UPS testing to promote more efficient operation.
 - Input or output accessories should be used with UPSs not designed to meet the specified conditions.

This is in contrast with IEC 62040-3 and some stakeholder comments, which suggest testing at the UPS design input voltage. EPA welcomes comment on the pros and cons of this approach.


- DC-Output UPSs
 - Same input voltage as AC UPSs
 - 380 VDC output

ENERGY STAR UPS Draft Test Method: Efficiency Test

- Proposed Loading Points:
 - Test at 100%, 75%, 50%,40%, 30%, 20%, 10%, and0% of the reference test load.

 Differ from IEC 62040-3 and data collected to date (at 100%, 75%, 50%, and 25% of load).

EPA welcomes comment on whether the proposed test conditions allow for an assessment of the practical efficiency range.

ENERGY STAR UPS Draft Test Method: Efficiency Test (cont'd)

- Measurement at 0% intended to limit energy losses due to underutilized UPSs.
 - Maintain chemical batteries with the output inverter turned off, in a "standby" or "hibernate" mode.
 - Also, limit battery maintenance losses.

EPA welcomes comment on the best way to test that batteries are being maintained in this mode. For example:

- Monitoring the status display of the UPS,
- Momentarily connecting the batteries to measure current, or
- Momentarily connecting a test load to mimic the batteries.

ENERGY STAR UPS Draft Test Method: Efficiency Test (cont'd)

- The efficiency test shall be repeated in case of:
 - Energy Saver Modes: repeated for each mode that meets definition of Normal Mode.
 - Parallel EPSs with Scalable Output Power: repeated at min. and max. configurations.

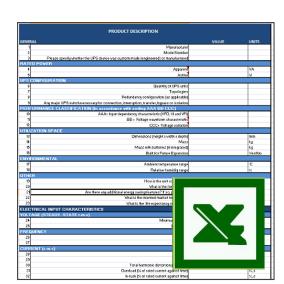
EPA welcomes comment whether repeating the efficiency tests as described above allows for comparisons:

- Between desired efficiency and reliability, and
- Between performance of parallel and non-parallel units.

ENERGY STAR UPS Draft Test Method: Overload Test

- Measuring Time in Overload
 - Overload handling allows a facility manager to use a UPS closer to 100% load where the efficiency is highest.
 - Proposed overload test based on section 6.4.2.10.1 of IEC 62040-3: Testing of manufacturer's overload claims.
 - Test at 125%,150%, 200% of the reference test load and any other conditions desired.

EPA welcomes comment on the benefits of overload testing and performing such tests safely.


Data Input Form

- Data Input Form Accompanied Test Method
 - Assemble a dataset in order to evaluate efficiency in the market.
 - Includes both test results and product characteristics.
 - Finalized data input form will be distributed following comment period.
 - Dataset construction to run for 8 weeks:
 Dec. 2010 Feb. 2011.

EPA welcomes comment on all aspects of the data input form.

Dataset Parameters

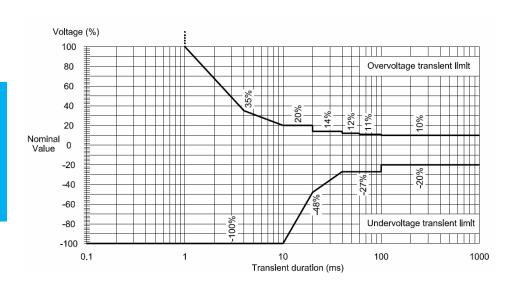
- Proposed Parameters Include:
 - Electrical input and output characteristics
 - Characteristics of energy storage device
 - Energy efficiency
 - Other general characteristics

EPA welcomes comment on striking the right balance between

- Imposing minimal burden, and
- Assembling the data necessary to make effective comparisons and set an energy efficiency specification.

Dataset Parameters (cont'd)

- Stakeholders commented that testing is burdensome, and that some data (tested to initial version of IEC 62040-3) already exists
 - EPA will collaborate with stakeholders to build a large dataset.
 - EPA encourages stakeholders to both:
 - Generate new data in accordance with final Data Input Form (to be released in December).
 - Submit existing data, even if generated under different loading points/conditions (using provided data input form).



Dataset Parameters (cont'd)

- Output conditioning characterized using the metrics in IEC 62040-3:
 - Voltage and frequency dependence (VFI, VI, VFD)
 - Voltage waveform characteristic (sinusoidal: yes/no)
 - Dynamic output performance (similar to of ITI-CBEMA curve).

EPA welcomes comment on whether this characterization sufficiently captures users' performance concerns.

Data Input: Additional Environmental Considerations

- EPA also seeks to identify efficient UPSs that deliver additional environmental benefits:
 - Battery recycling
 - Longer lifetimes through maintenance/warranties
 - Lower air-conditioning burden
- Some stakeholders have commented that these benefits should not/need not be accounted for in an ENERGY STAR specification.
 - E.g., IEC 62040-4, under development, deals with these issues.

EPA welcomes input on additional environmental considerations and how best to address them.

Real-Time Power Measurement and Reporting

- EPA is interested in real-time reporting for all datacenter products.
 - Stakeholders have commented that parallel efforts are currently under way.
 - E.g., Modbus, SNMP

EPA welcomes input on how it can best:

- Promote an industry-standard real-time reporting protocol, or
- Use the ENERGY STAR specification to standardize divergent protocols.

What's Next?

- Refine test procedure
- Develop Power Performance Data Sheet (PPDS) and Real-Time Power Measurement and Reporting
- Coordinate education
 - Data center operators, purchasing authorities
 - Encourage adoption of more efficient systems, practices
- Use data to understand UPS market
 - Energy consumption of small, medium, large systems
 - Quantify tradeoffs between reliability and efficiency
 - Performance, hardware characteristics
 - Special features
 - kWh reporting, Eco-Mode, overload, etc.

What's Next? (cont'd)

December:

- Receive feedback on test procedure (12/8/10)
- Publish final test procedure (12/17/10)
- Begin dataset development

February :

- Finish dataset development (2/4/11)
- Begin spec draft process

March – June:

- Draft revisions
- Stakeholder input/meetings

July:

- Publish final specification (7/15/11)
- Effective immediately

2011 Dates are Tentative

Open Comment

 EPA would now like to open up the line for any general comments from stakeholders.

References and Resources

 Energy Star UPS specification development <u>http://www.energystar.gov/index.cfm?c=new_sp</u> <u>ecs.uninterruptible_power_supplies</u>

 Energy Star Data Center energy efficiency initiatives http://www.energystar.gov/index.cfm?c=prod_de velopment.server_efficiency

Thank You!

RJ Meyers

EPA, Energy Star 202-343-9923

Meyers.Robert@epamail.epa.gov

Matt Malinowski

ICF International 202-862-2693

mMalinowski@icfi.com

Nina Ruiz

ICF International 914-997-0587 nRuiz@icfi.com

